Damped Wave Equations on Compact Hyperbolic Surfaces
نویسندگان
چکیده
منابع مشابه
Flat Spacetimes with Compact Hyperbolic Cauchy Surfaces
We study the flat (n+1)-spacetimes Y admitting a Cauchy surface diffeomorphic to a compact hyperbolic n-manifold M . Roughly speaking, we show how to construct a canonical future complete one, Yρ, among all such spacetimes sharing a same holonomy ρ. We study the geometry of Yρ in terms of its canonical cosmological time (CT). In particular we study the asymptotic behaviour of the level surfaces...
متن کاملFuchsian Groups and Compact Hyperbolic Surfaces
We present a topological proof of the following theorem of Benoist-Quint: for a finitely generated non-elementary discrete subgroup Γ1 of PSL(2,R) with no parabolics, and for a cocompact lattice Γ2 of PSL(2,R), any Γ1 orbit on Γ2\PSL(2,R) is either finite or dense.
متن کاملGlobal Attractors for Damped Semilinear Wave Equations
The existence of a global attractor in the natural energy space is proved for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain Ω ⊂ R with Dirichlet boundary conditions. The nonlinear term f is supposed to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n n−2 . No Lipschitz condition on f is assu...
متن کاملInertial manifolds of damped semilinear wave equations
© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...
متن کاملDamped Wave Equations with Dynamic Boundary Conditions
We discuss several classes of linear second order initial-boundary value problems, where damping terms appear in the main wave equation as well as in the dynamic boundary condition. We investigate their wellposedness and describe some qualitative properties of their solutions, including boundedness, stability, or almost periodicity. In particular, we are able to characterize the analyticity of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2020
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-019-03650-x